If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18x-140=0
a = 3; b = -18; c = -140;
Δ = b2-4ac
Δ = -182-4·3·(-140)
Δ = 2004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2004}=\sqrt{4*501}=\sqrt{4}*\sqrt{501}=2\sqrt{501}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{501}}{2*3}=\frac{18-2\sqrt{501}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{501}}{2*3}=\frac{18+2\sqrt{501}}{6} $
| 5(4x-1)-1(x5)=10(x+1) | | 12*n=17 | | 3=5(4p+5) | | 64+70+x=90 | | (x-225)^2-81=0 | | –9(s–2)=90 | | 3–3(2–x)=x+2 | | x7/3=2187 | | 3–3(2–x)=x+2. | | 50y+5=100 | | 5÷2×x=-7 | | 6x+4x+1=2(5x+4) | | 4y–1.9=1.7 | | 3x-(7-x)=-3 | | 7x+5=24x | | 9^x+9^-x=23 | | -34-20=4y+8 | | -3(x-4)=9× | | -25+4/5p=9 | | (12/5)x=118/15 | | 2(5x-2)=3(2(x+1)+14) | | 12/5x=118/15 | | 2(5x-2)=3{2(x+1)=14} | | 20=2x-(34-x) | | (4x-8x)+(-6-27)=63 | | 8x+5x-3x=13-9+33 | | (2x-1)(5x+3=0 | | 5b-3b+b=3b | | -(x-x+3)=2x-7 | | 60=-4(-3-3z) | | 2(y+4)-3=17 | | -2(x+5)-1=-3 |